Characterization of the P450 monooxygenase NysL, responsible for C-10 hydroxylation during biosynthesis of the polyene macrolide antibiotic nystatin in Streptomyces noursei.
نویسندگان
چکیده
The nysL gene, encoding a putative P450 monooxygenase, was identified in the nystatin biosynthetic gene cluster of Streptomyces noursei. Although it has been proposed that NysL is responsible for hydroxylation of the nystatin precursor, experimental evidence for this activity was lacking. The nysL gene was inactivated in S. noursei by gene replacement, and the resulting mutant was shown to produce 10-deoxynystatin. Purification and an in vitro activity assay for 10-deoxynystatin demonstrated its antifungal activity being equal to that of nystatin. The NysL protein was expressed heterologously in Escherichia coli as a His-tagged protein and used in an enzyme assay with 10-deoxynystatin as a substrate. The results obtained clearly demonstrated that NysL is a hydroxylase responsible for the post-polyketide synthase modification of 10-deoxynystatin at position C-10. Kinetic studies with the purified recombinant enzyme allowed determination of K(m) and k(cat) and revealed no inhibition of recombinant NysL by either the substrate or the product. These studies open the possibility for in vitro evolution of NysL aimed at changing its specificity, thereby providing new opportunities for engineered biosynthesis of novel nystatin analogues hydroxylated at alternative positions of the macrolactone ring.
منابع مشابه
Analysis of the mycosamine biosynthesis and attachment genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455.
The polyene macrolide antibiotic nystatin produced by Streptomyces noursei contains a deoxyaminosugar mycosamine moiety attached to the C-19 carbon of the macrolactone ring through the beta-glycosidic bond. The nystatin biosynthetic gene cluster contains three genes, nysDI, nysDII, and nysDIII, encoding enzymes with presumed roles in mycosamine biosynthesis and attachment as glycosyltransferase...
متن کاملChemical diversity of polyene macrolides produced by Streptomyces noursei ATCC 11455 and recombinant strain ERD44 with genetically altered polyketide synthase NysC.
The gram-positive bacterium Streptomyces noursei ATCC 11455 produces a complex mixture of polyene macrolides generally termed nystatins. Although the structures for nystatins A(1) and A(3) have been reported, the identities of other components of the nystatin complex remain obscure. Analyses of the culture extract from the S. noursei wild type revealed the presence of several nystatin-related c...
متن کاملIn vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis.
Six putative regulatory genes are located at the flank of the nystatin biosynthetic gene cluster in Streptomyces noursei ATCC 11455. Gene inactivation and complementation experiments revealed that nysRI, nysRII, nysRIII, and nysRIV are necessary for efficient nystatin production, whereas no significant roles could be demonstrated for the other two regulatory genes. To determine the in vivo targ...
متن کاملLimiting reactions in activation of acyl units in biosynthesis of macrolide antibiotics.
Formation of propionyl phosphate in Streptomyces erythreus synthesizing a polypropionate erythronolide ring of erythromycin was found to be catalyzed by a specific propionate kinase. The isolated and 100-fold purified kinase was devoid of activity towards acetate and other monocarboxylic acids. The selection for higher antibiotic-synthesizing ability was associated with higher kinase activity a...
متن کاملInitiation of polyene macrolide biosynthesis: interplay between polyketide synthase domains and modules as revealed via domain swapping, mutagenesis, and heterologous complementation.
Polyene macrolides are important antibiotics used to treat fungal infections in humans. In this work, acyltransferase (AT) domain swaps, mutagenesis, and cross-complementation with heterologous polyketide synthase domain (PKS) loading modules were performed in order to facilitate production of new analogues of the polyene macrolide nystatin. Replacement of AT(0) in the nystatin PKS loading modu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 72 4 شماره
صفحات -
تاریخ انتشار 2006